Rappresentazioni dello spettro #

I grafici mostrano diverse rappresentazioni spettrali di un segnale sinusoidale con rumore additivo. Uno spettro (di frequenza) di un segnale a tempo discreto viene calcolato utilizzando la trasformata di Fourier veloce (FFT).

Segnale, Magnitudo Spettro, Log.  Spettro di magnitudine, spettro di fase, spettro angolare
import matplotlib.pyplot as plt
import numpy as np


np.random.seed(0)

dt = 0.01  # sampling interval
Fs = 1 / dt  # sampling frequency
t = np.arange(0, 10, dt)

# generate noise:
nse = np.random.randn(len(t))
r = np.exp(-t / 0.05)
cnse = np.convolve(nse, r) * dt
cnse = cnse[:len(t)]

s = 0.1 * np.sin(4 * np.pi * t) + cnse  # the signal

fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(7, 7))

# plot time signal:
axs[0, 0].set_title("Signal")
axs[0, 0].plot(t, s, color='C0')
axs[0, 0].set_xlabel("Time")
axs[0, 0].set_ylabel("Amplitude")

# plot different spectrum types:
axs[1, 0].set_title("Magnitude Spectrum")
axs[1, 0].magnitude_spectrum(s, Fs=Fs, color='C1')

axs[1, 1].set_title("Log. Magnitude Spectrum")
axs[1, 1].magnitude_spectrum(s, Fs=Fs, scale='dB', color='C1')

axs[2, 0].set_title("Phase Spectrum ")
axs[2, 0].phase_spectrum(s, Fs=Fs, color='C2')

axs[2, 1].set_title("Angle Spectrum")
axs[2, 1].angle_spectrum(s, Fs=Fs, color='C2')

axs[0, 1].remove()  # don't display empty ax

fig.tight_layout()
plt.show()

Tempo di esecuzione totale dello script: (0 minuti 1,149 secondi)

Galleria generata da Sphinx-Gallery